The research activities on Quantum Computing at Politecnico di Milano cover several areas and topics:
Applied Quantum Computing
Pellini, R., Ferrari Dacrema, M. Analyzing the effectiveness of quantum annealing with meta-learning. Quantum Machine Intelligence 6, 48 (2024). https://doi.org/10.1007/s42484-024-00179-8
Carugno, C., Ferrari Dacrema, M., Cremonesi, P. Adaptive Learning for Quantum Linear Regression. International Conference on Quantum Computing and Engineering (2024).
Turati, G., Ferrari Dacrema, M., Cremonesi, P. Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances. International Conference on Quantum Computing and Engineering (2023). https://doi.org/10.1109/QCE57702.2023.00053
Carugno, C., Ferrari Dacrema, M., Cremonesi, P. Evaluating the job shop scheduling problem on a D-wave quantum annealer. Nature Scientific Reports12, 6539 (2022). https://doi.org/10.1038/s41598-022-10169-0
Ferrari Dacrema, M., Moroni F., Nembrini R., Ferro N., Faggioli G., Cremonesi, P. Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers, SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. https://doi.org/10.1145/3477495.3531755
Nembrini, R.; Ferrari Dacrema, M.; Cremonesi, P. Feature Selection for Recommender Systems with Quantum Computing. Entropy (2021), 23, 970. https://doi.org/10.3390/e23080970
Ferrari Dacrema, M.; Nembrini, R.; Zhou, T.; Cremonesi, P. Quantum Annealing Linear Regression For Collaborative Filtering Recommendations. European Quantum Technologies Conference, 2021.
Ferrari Dacrema, M.; Felicioni, N.; Cremonesi, P. Personalizing Video Recommendation Layout with Quantum Annealing. European Quantum Technologies Conference, 2021.
Ferrari Dacrema, M.; Felicioni, N.; Cremonesi, P. Optimizing the Selection of Recommendation Carousels with Quantum Computing. Fifteenth ACM Conference on Recommender Systems, 2021, 691–696. https://dl.acm.org/doi/abs/10.1145/3460231.3478853
Quantum Computing Algorithms
Simone Perriello, Alessandro Barenghi, Gerardo Pelosi: A Complete Quantum Circuit to Solve the Information Set Decoding Problem. IEEE International Conference on Quantum Computing and Engineering, QCE 2021 https://doi.org/10.1109/QCE52317.2021.00056
Simone Perriello, Alessandro Barenghi, Gerardo Pelosi: A Quantum Circuit to Speed-Up the Cryptanalysis of Code-Based Cryptosystems. Security and Privacy in Communication Networks – 17th EAI International Conference, SecureComm 2021 (ed. Springer) https://doi.org/10.1007/978-3-030-90022-9_25
Quantum Machine Learning
Armando Bellante, Alessandro Luongo, Stefano Zanero: Quantum algorithms for SVD-based data representation and analysis. Quantum Machine Intelligence 4.2 (2022) (ed. Springer) https://doi.org/10.1007/s42484-022-00076-y
Armando Bellante, Stefano Zanero: Quantum matching pursuit: A quantum algorithm for sparse representations. Poster session at QIP 2022. Physical Review A, 2022, 105.2: 022414 https://doi.org/10.1103/PhysRevA.105.022414
Armando Bellante: Quantum data representations for audio and natural language processing. Quantum natural language processing 2022 (org. by Cambridge Quantum Computing) Link to the talk
Armando Bellante, Gopikrishnan Muraleedharan, Rolando Somma: Solving the quantum simulation problem via signal analysis. 2021 Virtual Theoretical Division Lightning Talk Series (Los Alamos National Laboratory) https://doi.org/10.2172/1836977
Alessandro Luongo, Armando Bellante: The quantumalgorithms.org project. IEEE, International Conference on Quantum Computing and Engineering, QCE 2021, Workshop: Developing Effective Methodologies to Teach Quantum Information Science to Early-Stage Learners
Armando Bellante, Alessandro Luongo: Quantum algorithms for NLP: LSA, QSFA and CA. Quantum week of fun, Quantum natural language processing 2020 (org. by Cambridge Quantum Computing) Link to the talk